home *** CD-ROM | disk | FTP | other *** search
- .geometry "version 0.1";
- v1 = .free(-0.502717, 0.108696, .invisible, .L0, "1");
- v2 = .free(0.391304, 0.326087, .invisible, .L0, "2");
- v3 = .free(0.0978261, -0.293478, .invisible, .L0, "3");
- l1 = .l.vv(v1, v2, .invisible, .L0);
- l2 = .l.vv(v2, v3, .invisible, .L0);
- l3 = .l.vv(v3, v1, .invisible, .L0);
- c1 = .c.vv(v2, v3, .invisible, .L0);
- v4 = .v.lc(l1, c1, 1, .invisible, .L0, .plus);
- v5 = .v.vvmid(v4, v3, .invisible, .L0, .plus);
- l4 = .l.vv(v2, v5, .invisible, .L0);
- c2 = .c.vv(v1, v3, .invisible, .L0);
- v6 = .v.lc(l1, c2, 2, .invisible, .L0, .plus);
- v7 = .v.vvmid(v6, v3, .invisible, .L0, .plus);
- l5 = .l.vv(v1, v7, .invisible, .L0);
- v8 = .v.ll(l4, l5, .invisible, .L0, .plus);
- l6 = .l.vlperp(v8, l1, .invisible, .L0);
- v9 = .v.ll(l6, l1, .invisible, .L0, .plus);
- c3 = .c.vv(v8, v9, .L0);
- c4 = .c.vvv(v3, v2, v1, .L0);
- v10 = .vonc(c4, 0.344629, -0.111304, .L0, .cross, "Start");
- l7 = .l.vc(v10, c3, 1, .invisible, .L0);
- l8 = .l.vc(v10, c3, 2, .invisible, .L0);
- v12 = .v.lc(l7, c4, 2, .L0, .plus);
- v13 = .v.lc(l8, c4, 2, .L0, .plus);
- l9 = .l.vv(v10, v12, .L0);
- l10 = .l.vv(v12, v13, .L0);
- l11 = .l.vv(v13, v10, .L0);
- .text("The Great Poncelet Theorem for Circles");
- .text("");
- .text("Given 2 circles, one contained within another, choose any point");
- .text("on the outer circle, construct the tangent to the inner circle and");
- .text("continue to find a new point, and so on. Either the lines will");
- .text("close for all starting points, or for none. This figure illustrates");
- .text("the theorem for two circles arranged so as to close on the third");
- .text("line.");
-